Some More Results on Stolarsky-3 Mean Labeling of Graphs

S.Kavitha ${ }^{{ }^{*}}$, S.S. Sandhya ${ }^{2}$, E.Ebin Raja Merly ${ }^{3}$
${ }^{1}$ Nesamony Memorial Christian College, Marthandam-629165 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India)
${ }^{2}$ Department of Mathematics, SreeAyyappa College for Women, Chunkankadai- 629003, Tamilnadu, India
${ }^{3}$ Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, Tamilnadu, India

Corresponding Author:kavis.maths@gmail.com, Tel: 8903617360

Available online at: www.isroset.org

Received: 22/Nov/2018, Accepted: 16/Dec/2018, Online:31/Dec/2018

Abstract

$\overline{\text { Abstract }- \text { In this paper, we contribute some new results for Stolarsky-3 Mean labeling of graphs. We have already proved }}$ Stolarsky-3 Mean labeling of some standard Graphs. We use some more standard graphs to derive the results of Stolarsky-3 Mean labeling. We prove Stolarsky-3 Mean labeling of Bistar, Planar Grid, Crown and Square of a Path.

Keywords: Graph Labeling, Mean Labeling, Stolarsky-3 Mean Labeling, Bistar, Crown.

I. INTRODUCTION

The graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is considered here will be finite, simple and undirected. We follow Gallian [1] for all detailed survey of graph labeling and we refer Harary [2] for all other standard terminologies and notations. The concept of "Mean Labeling"has been introduced by S.Somasundaram and R.Ponraj in 2004[3] and S.Somasundaram and S.S. Sandhya introduced the concept of "Harmonic Mean Labeling of graphs" in [4]. The concept of "Stolarsky-3 Mean Labeling" has introduced by S.S.Sandhya, E.Ebin Raja Merely and S.Kavitha in [6].

We will give the following definitions and other information's are useful for our present investigation.

Definition 1.1: A graph G with p vertices and q edges is said to be S be Stolarsky-3 Mean graph if each vertex $x \in v$ is assigned distinct labels $f(x)$ from $1,2, \ldots, q+1$ and each edge $\mathrm{e}=\mathrm{uv}$ isassigned the distinct labels $\mathrm{f}(\mathrm{e}=\mathrm{uv})=$ $\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G.

Definition 1.2: The Bistar $B_{m, n}$ is the graph obtained from K_{2} by joining m pendant edges to one end of K_{2} and n pendant edges to the other end of K_{2}. The edge of K_{2} is called the central edge of $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ and the vertices of K_{2} are called the central vertices of $B_{m, n}$.

Definition 1.3:The Square G^{2} of a graph G has $\mathrm{V}\left(G^{2}\right)=\mathrm{V}$ (G) with u , v adjacent in G^{2} whenever $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$ in G

Definition 1.4: The Corona $G_{1} \boldsymbol{\theta} G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G (which has p vertices and p copies of G_{2}) and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertices in the $\mathrm{i}^{\text {th }}$ copy of G_{2}. Here we restrict ourselves to corona with cycles. The graph $C_{n} \boldsymbol{\Theta} K_{1}$ is called a Crown.

Definition 1.5: The Cartesian product of two graphs G_{1} and G_{2} is thee graph $G_{1} \times G_{2}$ with the vertex set $V_{1} \times V_{2}$ and two vertices $\mathrm{u}=\left(u_{1}, u_{2}\right)$ and $\mathrm{v}=\left(v_{1}, v_{2}\right)$ are adjacent whenever $u_{1}=v_{1}$ and u_{2} adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} adjacent to v_{1}.

Definition 1.6: $P_{m} \times P_{n}$ is called a planar grid.

II. MAIN RESULTS

Theorem 2.1: The Bistar $B_{m, n}$ is Stolarsky-3 Mean graph if $\mathrm{m} \leq 7$ and $\mathrm{n} \leq 10$.
Proof: Let $B_{m, n}$ be a Bistar graph.
Consider two cases.
Case (i) $\mathbf{m} \leq \mathbf{7 \&} \mathbf{n} \leq \mathbf{1 0}$
Let $\mathrm{u}, \mathrm{v}, u_{i}, v_{j}, 1 \leq i \leq m, 1 \leq \mathrm{j} \leq \mathrm{n}$ are the vertices of $B_{m, n}$ and uv, $u u_{i}, \mathrm{v} v_{j}$
$1 \leq i \leq m, 1 \leq j \leq n$ are the edges of $B_{m, n}$.
Define a function $\mathrm{f}: \mathrm{V}\left(B_{m, n}\right) \rightarrow\{1,2, \ldots ., \mathrm{q}+1\}$ by
$\mathrm{f}(u)=1$.
$\mathrm{f}\left(u_{i}\right)=2 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{m}$.
$\mathrm{f}\left(v_{j}\right)=2 \mathrm{n}+2(\mathrm{j}-1), 1 \leq \mathrm{j} \leq \mathrm{n}$.
Then the edges are labeled with
$\mathrm{f}(u v)=1$,
$\mathrm{f}\left(\mathrm{u} u_{i}\right)=\mathrm{i}+1,1 \leq i \leq m$.
$\mathbf{f}\left(\mathrm{v} v_{j}\right)=\mathbf{f}\left(\mathrm{u} u_{m}\right)+\mathrm{j}, 1 \leq j \leq n$.
Then the edge labels are distinct.
Hence $B_{m, n}$ is Stolarsky-3 Mean graph if $m \leq 7$ and $n \leq 10$.
Example 2.2:The Stolarsky-3 Mean labeling ofB 7,10 is given below

Figure:1
Case (ii) $\mathrm{m} \geq 8, \mathrm{n} \geq 11$
Let $\mathrm{u}, \mathrm{v}, u_{i}, v_{j}, 1 \leq i \leq m, 1 \leq \mathrm{j} \leq \mathrm{n}$ are the vertices of $B_{m, n}$ and uv, $u u_{i}, v v_{j}$
$1 \leq i \leq m, 1 \leq j \leq n$ are the edges of $B_{m, n}$.

When $m=8$ and $n=11$

Let the label of the vertices are
$\mathrm{u}=1$.
$u_{i}=2 \mathrm{i}+1,1 \leq \mathrm{i} \leq 8$.
And the edges are labeled as
$u v=1$.
$\mathrm{u} u_{i}=\mathrm{i}+1,1 \leq \mathrm{i} \leq 7$.
$\mathrm{u} u_{8}=10$.
Here the number 9 cannot be labeled
$\mathrm{v} v_{j}=\mathrm{u} u_{8}+\mathrm{j}, 1 \leq \mathrm{j} \leq 3$.
$\mathrm{v} v_{4}=15$
$\mathrm{v} v_{j}=\mathrm{v} v_{j-1}+1,5 \leq \mathrm{j} \leq 10$.
$\mathrm{v} v_{11}=23$
Here the numbers 14 and 22 cannot be labeled
Hence $B_{m, n}$ is not a Stolarsky-3 Mean graph if $\mathrm{m} \geq 8, \mathrm{n} \geq 11$.
Example 2.2:The Stolarsky-3 Mean labeling of $\mathrm{B}_{8,11}$ is given below

Figure: 2

Theorem 2.3: The graph $P_{n}{ }^{2}$ is Stolarsky-3 Mean graph.
Proof: Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$.
Clearly $P_{n}{ }^{2}$ has n vertices and $2 \mathrm{n}-3$ edges.
Define a function $\mathrm{f}: \mathrm{V}\left(P_{n}{ }^{2}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathrm{f}\left(u_{1}\right)=1$.
$\mathbf{f}\left(u_{2}\right)=2$.
$\mathrm{f}\left(u_{i}\right)=2 \mathrm{i}-3,3 \leq i \leq n$.
Then the edges are labeled as
$\mathrm{f}\left(u_{i} u_{i+1}\right)=2 \mathrm{i}-1,1 \leq i \leq n-1$.
$\mathrm{f}\left(u_{i} u_{i+2}\right)=2 \mathrm{i}, 1 \leq i \leq n-2$.
Then the edge labels are distinct. Hence $P_{n}{ }^{2}$ is Stolarsky3 Mean graph.
Example 2.4: TheStolarsky-3 Mean labeling of $P_{6}{ }^{2}$ is given below.

Figure: 3
Theorem 2.5: The Planar grid $P_{m} \times P_{4}$ is Stolarsky-3 Mean graph.
Proof: Let $\mathrm{V}\left(P_{m} \times P_{4}\right)=\left\{a_{i j}, 1 \leq i \leq m, 1 \leq j \leq 4\right\}$
And $\mathrm{E}\left(P_{m} \times P_{4}\right)=\left\{a_{i(j-1)} a_{i j}, 1 \leq i \leq m, 1 \leq j \leq 4 \cup\right.$
$\left.a_{(i-1) j} a_{i j}, 2 \leq i \leq m, 1 \leq \mathrm{j} \leq 4\right\}$
Define a function $\mathrm{f}: \mathrm{V}\left(P_{m} \times P_{4}\right) \rightarrow\{1,2, \ldots ., \mathrm{q}+1\}$ by
$\mathbf{f}\left(a_{1 j}\right)=\mathrm{j}, \quad 1 \leq j \leq 4$.
$\mathrm{f}\left(a_{2 j}\right)=\mathrm{f}\left(a_{(i-1) 4}\right)+2+\mathrm{j}, 2 \leq i \leq m, 1 \leq \mathrm{j} \leq 4$.
$\mathrm{f}\left(a_{i j}\right)=\mathbf{f}\left(a_{(i-1) 4}\right)+3+\mathrm{j}, 3 \leq i \leq m, 1 \leq \mathrm{j} \leq 4$.
Then the edges are labeled as
$\mathrm{f}\left(a_{i j} a_{i j+1}\right)=7(\mathrm{i}-1)+\mathrm{j}, 1 \leq i \leq m, 1 \leq \mathrm{j} \leq 3$.
$\mathrm{f}\left(a_{i j} a_{i+1 j}\right)=3+7(\mathrm{i}-1)+\mathrm{j}, 1 \leq i \leq m-1,1 \leq \mathrm{j} \leq 3$.
Then we get distinct edge labels.
Hence f is Stolarsky-3 Mean labeling.
Example 2.6: The labeling pattern of $P_{5} \times P_{4}$ is given below.

Figure: 4
Theorem 2.7: The Planar grid $P_{m} \times P_{3}$ is Stolarsky-3 Mean graph.

Proof: Let $\mathrm{V}\left(P_{m} \times P_{3}\right)=\left\{a_{i j}, 1 \leq i \leq m, 1 \leq j \leq 3\right\}$ and $\mathrm{E}\left(P_{m} \times P_{3}\right)=\left\{a_{i(j-1)} a_{i j}, \quad 1 \leq i \leq m, \quad 2 \leq j \leq 3 \cup\right.$ $\left.a_{(i-1) j} a_{i j}, 2 \leq i \leq m, 1 \leq \mathrm{j} \leq 3\right\}$
Define a function $\mathbf{f}: \mathrm{V}\left(P_{m} \times P_{3}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(a_{1 j}\right)=\mathrm{j}, \quad 1 \leq j \leq 3$.
$\mathbf{f}\left(a_{i j}\right)=\mathbf{f}\left(a_{(i-1) 3}\right)+2+\mathrm{j}, 2 \leq i \leq m, 1 \leq \mathrm{j} \leq 3$.
Then the edges are labeled as
$\mathbf{f}\left(a_{i j} a_{i j+1}\right)=5(\mathrm{i}-1)+\mathrm{j}, \quad 1 \leq i \leq m, 1 \leq \mathrm{j} \leq 2$.
$\mathbf{f}\left(a_{i j} a_{i+1 j}\right)=2+5(\mathrm{i}-1)+\mathrm{j}, 1 \leq i \leq m-1,1 \leq \mathrm{j} \leq 3$.
Then we get distinct edge labels.
Hence f is Stolarsky-3 Mean labeling.
Example 2.8: The labeling pattern of $P_{6} \times P_{3}$ is given below.

Figure: 5
Theorem 2.9: The Crown $C_{n} \boldsymbol{\theta} \mathrm{~K}_{1}$ is a Stolarsky-3 Mean graph.
Proof: Let C_{n} be the cycle $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ and let $v_{1}, v_{2}, \ldots, v_{n}$, be the pendant vertices attached to u_{i}, $1 \leq i \leq n$.

$$
\text { Let } \mathrm{G}=C_{n} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{1}}
$$

Define a function
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=2 \mathrm{i}-1, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=2 \mathrm{i}, \quad 1 \leq i \leq n$.
Then the edge labels are distinct.
Hence Crown isStolarsky-3 Mean labeling.
Example 2.10: TheStolarsky-3 Mean labeling of $C_{6} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{1}}$ is given below.

Figure 6
Theorem 2.11: The graph $C_{n} \boldsymbol{\Theta} \mathrm{~K}_{1,2}$ is Stolarsky-3 Mean graph.

Proof: Let C_{n} be the cycle $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ and let v_{i}, w_{i} be the pendant vertices attached to $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=C_{n} \boldsymbol{\Theta} \mathrm{~K}_{\mathbf{1 , 2}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}-1, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-2, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=3 \mathrm{i}, \quad 1 \leq i \leq n$.
Then the edge labels are distinct.
Hence $C_{n} \boldsymbol{0} \mathrm{~K}_{\mathbf{1 , 2}}$ is stolarsky-3 Mean graph.
Example 2.12: The Stolarsky-3 Mean labeling of $C_{5} \boldsymbol{\theta} \mathrm{~K}_{1,2}$ is given below.

Figure 7
Theorem 2.13: The graph $C_{n} \boldsymbol{\theta} \mathrm{~K}_{1,3}$ is Stolarsky-3 Mean graph.
Proof: Let C_{n} be the cycle $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ and let K_{3} be the cycle with the vertices $v_{i}, w_{i} x_{i}$ attached to each of the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=C_{n} \boldsymbol{\Theta} \mathrm{~K}_{\mathbf{1 , 3}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-2, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-3, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=4 \mathrm{i}-1, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(x_{i}\right)=4 \mathrm{i}, \quad 1 \leq i \leq n$.
Then the edge labels are distinct.
Hencethe graph $C_{n} \boldsymbol{\theta} \mathrm{~K}_{1,3}$ is stolarsky-3 Mean graph.
Example 2.14:The Stolarsky-3 Mean labeling of $C_{5} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{1 , 3}}$ is given below.

Figure 8
Theorem 2.15: The graph $C_{n} \boldsymbol{\theta} \mathrm{~K}_{3}$ is Stolarsky-3 Mean graph.

Proof: Let C_{n} be the cycle $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ and let K_{3} be the cycle with the vertices v_{i}, w_{i} joining to each of the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=C_{n} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{3}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-2, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-3, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=4 \mathrm{i}, \quad 1 \leq i \leq n$.
Then the edge labels are distinct.
Hencethe graph $C_{n} \boldsymbol{\Theta} \mathrm{~K}_{\mathbf{3}}$ is stolarsky-3 Mean graph.
Example 2.16: The Stolarsky-3 Mean labeling of $C_{5} \boldsymbol{\Theta} \mathrm{~K}_{3}$ is given below.

Figure 9
Theorem 2.17: The graph $P_{n} \boldsymbol{\theta} \mathrm{~K}_{3}$ is Stolarsky-3 Mean graph.
Proof: Let P_{n} be the Path on n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and let K_{3} be the cycle with the vertices v_{i}, w_{i} joining to each of the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=P_{n} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{3}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-2, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=4 \mathrm{i}-1, \quad 1 \leq i \leq n$.
Then the edges are labeled as
$\mathbf{f}\left(u_{i} u_{i+1}\right)=4 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} w_{i}\right)=4 \mathrm{i}-2,1 \leq i \leq n-1$.
Hence the edge labels are distinct.
Hencethe graph $P_{n} \boldsymbol{\theta} \mathrm{~K}_{3}$ is stolarsky-3 Mean graph.
Example 2.18 :The Stolarsky-3 Mean labeling of $P_{5} \boldsymbol{\theta K}_{3}$ is given below.

Figure 10
Theorem 2.19: The graph $P_{n} \boldsymbol{\Theta} \mathrm{~K}_{1,2}$ is Stolarsky-3 Mean graph.

Proof: Let P_{n} be the Path on n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and let v_{i}, w_{i} be the pendant vertices attached to each of the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=P_{n} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{1 , 2}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-1, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=3 \mathrm{i}, \quad 1 \leq i \leq n$.
Then the edges are labeled as
$\mathbf{f}\left(u_{i} u_{i+1}\right)=3 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} w_{i}\right)=3 \mathrm{i}-1,1 \leq i \leq n-1$.
Then the edge labels are distinct.
Hencethe graph $P_{n} \boldsymbol{\Theta} \mathrm{~K}_{\mathbf{1}, \mathbf{2}}$ is stolarsky-3 Mean graph.
Example 2.20: The Stolarsky-3 Mean labeling of $P_{5} \boldsymbol{\theta} \mathrm{~K}_{1,2}$ is given below.

Figure 11
Theorem 2.21: The graph $P_{n} \boldsymbol{\theta} \mathrm{~K}_{1,3}$ is Stolarsky-3 Mean graph.
Proof: Let P_{n} be the Path on n vertices $u_{1}, u_{2}, \ldots, u_{n}$ and let v_{i}, w_{i}, x_{i} be the pendant vertices attached to each of the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let $\mathrm{G}=P_{n} \boldsymbol{\Theta} \mathrm{~K}_{\mathbf{1}, \mathbf{3}}$
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-2, \quad 1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=4 \mathrm{i}-1, \quad 1 \leq i \leq n$.
Then the edges are labeled as
$\mathbf{f}\left(u_{i} u_{i+1}\right)=4 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} w_{i}\right)=4 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} x_{i}\right)=4 \mathrm{i}-1,1 \leq i \leq n-1$.
Then the edge labels are distinct.
Hencethe graph $P_{n} \boldsymbol{\theta} \mathrm{~K}_{\mathbf{1}, \mathbf{3}}$ is stolarsky-3 Mean graph.
Example 2.22: The Stolarsky-3 Mean labeling of $P_{5} \boldsymbol{\theta} \mathrm{~K}_{1,3}$ is given below.

Figure 12

III. CONCLUSION

The Study of labeled graph is important due to its diversified applications. It is very interesting to investigateStolarsky-3 mean graphs which admit Stolarsky-3 Mean Labeling. The derived results are demonstrated by means of sufficient Illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.

IV. REFERENCES

[1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017), \#DS6.
[2] F.Harary, 1988, "Graph Theory" Narosa Puplishing House Reading, New Delhi.
[3] S.Somasundram, and R.Ponraj 2003 "Mean Labeling of Graphs", National Academy of Science Letters Vol. 26, p.210-213.
[4] S.Somasundram, R.Ponraj and S.S.Sandhya, " Harmonic Mean Labeling of Graphs" communicated to Journal of Combinatorial Mathematics and combinational computing.
[5] S.S.Sandhya, S.Somasundaram and S.Anusa "Some More Results on Root Square Mean Graphs" Journal of Mathematics Research; Vol.7, No.1; 2015.
[6] S.S.Sandhya, E.Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Graphs" Journal of Applied Science and Computations; Volume 5, Issue 9, September /2018 PP. 59-66.
[7] S.S.Sandhya, E.Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Some Special Graphs" Global Journal of Pure and Applied Mathematics; Volume 14, Number 1(2018)pp.39-47.
[8] S.S.Sandhya, E.Ebin Raja Merly and S.Kavitha "Some New Results on Super Stolarsky-3 Mean Labeling’International Journal of Mathematics Research; Volume 10, Number 1 (2018), pp. 7-20.

AUTHORS PROFILE

Mrs. S.KAVITHA pursed M.Sc and M.Phil Mathematics from Holy Cross College, Nagercoil and Aditanar College Tiruchendur in 2003 and 2006. She is a Research Scholar in Nesamony Memorial Christian College, Marthandam. She has published 7 research articles. Her area of interest is Graph theory. She has more than 10 years of teaching experience.

Dr.S.S.SANDHYA pursed M.Sc., M.Phil; PGDCA; and Ph.D. Mathematics from Nesamony Memorial Christian College, Marthandam , Alagappa University, Karaikudi and M.S.University, Tirunelveli in 1992, 1993 \& 2012. She is currently working as a Assistant Professor in Sree Ayyappa College for women, Chunkankadai. She has published more than 80 research articles. She is Guiding 7 Scholars (out of which 2 completed and 2 submitted). Her area of interest is Graph Theory and Operations Research. She has 24 years of teaching experience and 5 years of research experience.

Dr. E.EBIN RAJA MERELY pursed M.Sc; M.Phil; PGDCA and Ph.D. Mathematics from Nesamony Memorial Christian College, Marthandam , Alagappa University, Karaikudi and M.S.University, Tirunelveli in 1991, 1993 \&2012. She is currently working as a Assistant Professor in Nesamony Memorial Christian College, Marthandam. She has published more than 60 research papers. Her area of interest is Graph Theory- Graph Decomposition. She has 20 years of teaching experience and 5 years of research experience.

